Flowing Flowing	Dumpod	Flare 1	Eleventer	Flow	mned er unless		or flamin	Constant-rate Ston tests	0k	Unone-11 14	A 11 4 - 1	Drill stom tosts Constant-rate	Ctor to t		motion	find test-		Constant-rate	Deserver	ion well	Storativity/storage coefficient
Range Range ount (median) Count (median) Co	Flowing Pumped Range Range (median) Count (median)	Flowing Range Count (median) Co	Flowing Range unt (median) Cour	Flowing Put Range nt (median) Co	mped or unknown Petroleum w Range R ount (median) Count (m	ell data Flowing Pumped ange Range edian) Count (median) Count		lischarge test Step tests Ange Range	Observation well Count Range	Unspecified tests	All tests Range	Count Range Count Range (Step test Re	Range	Range	fied tests All tests Range (ft²/day) Count Rang (ft²/day)	e Count Range	discharge test		Range Count Range	Count Range
(gal/min) (gal/min)	(gal/min) (gal/min)	(gal/min)	(gal/min)	(gal/min)	(gal/min) (ga		(gal/min)	(gal/min)/ft] [(gal/min)/ft]	(gal/min)/ft]	Cenozoic hydrogeologic units uvial aquifers (alluvium and collu	(gal/min)/ft	(ft²/day) (ft²/day)	(ft²/day)	(ft²/day)	(ft²/day)	(ft²/day) (ft²/da	y) (percen	t) (ft/day)	(ft/day) (ft/day)	,ft/day) (ft/day)	(unitless)
	1 25	1 20.0			3 25–59 (50)	4	(37.5)	16		1	16										1; 10
1 2	1 60 3 1.2–35 (20) 26 1.5–3,000 (50)	1 89.8			1 1,540 54 5-2,180 ((0))			2.7–100			0.03-70	3 1,470– 2,080			13	188–6,700 16 188–6,	700				1; 9; 10; 40; 46 1 0.04 1; 2; 8; 10; 27; 2 26, 28, 20; 46
	(50) 6 8-40 (18) 4 6-50 (8.5)	1 3,590			(60) 1 30 5 25-75 (50)		(55) 8-40 (24) 6-75 (37.5)			1 7.5 1 4 0.5–38 4	7.5 0.5–38	2,080			1 1	800 1 800 2,680 1 2,68					36; 38; 39; 40 1; 2; 9; 46 1; 2; 12; 39; 46
	30 4–1,200 (9)		1	12 2	20 5–1,500 (165)	51	4–1,500 2 (12) 2	170; 260 2 48; 480	Qu	12 1.3–250 16 Jaternary terrace-deposit aquife	1.3–480	2 33,500; 42,200	1 49,600		4 1	21–49,600 7 121–49	600	1 620		1 620	1 0.0003 1; 2; 12; 14; 18; 48; 54; 56
1 2	1 12 4 9–80 (33.5)				2 8; 13.6 6 10–900 (26.5)		8–13.6 (12) 9–900 (17)			1 7.5 1 5 3.7–190 5	7.5										1; 40; 42; 43 1; 8; 10; 28; 40;
1 5	1 10				1 21	1 5 2	10–21														1; 12; 46 1; 12; 45; 46
1 5	1 15	1 112			3 2.5–18 (13.5)	2 5; 112 4	2.5–18 (14.2)			20.1; 2.32					1	241 1 241					1; 2; 10; 35; 40;
1 20	6 60–210 (72.5)	4 1.6–2,240 (454) 2 45; 45	2	2.8; 7.4 1	15 5–118 (12.5)	5 1.6-2,240 23 (20) 2 45; 45	× /	1–11		13 0.2–19 16	0.2–19	2 188; 509	1	161 1	188 2	20.1; 26.8 6 20.1-5	09				1; 2; 8; 9; 10; 20 36; 40; 46
4 5–30 (15)						2 43, 45 4 5-30 (15)				Quaternary landslide deposits											1; 2; 12; 46
1 50 1 50		5 224-6,730 (673) 1 359				6 50-6,730 (448) 2 50; 359	_														1; 35; 40; 46 1; 9; 40; 46
		4 22–23,800 (415)				4 22–23,800 (415)			Quata	rnary loess and lithified talus de	nosite										35
	2 25; 100				2 20; 20		20–100			40.25–9.14and Tertiary volcanic rocks (rhy	0.25-9.1				2	80; 400 2 80; 4	00				1; 2; 40; 46
		7 1.8–449 (9) 3:	3 0.8–300 (3.2)			40 0.8–449 (3.7)			Quaternary an	d Tertiary volcanic rocks (Yellow	vstone Group)										7; 9; 49
1 5					8 5–900 (23)	1 5 8 1 3	5–900 (23) 1	2.3	Queterners and	7 0.05–11 8 Tertiary volcanic rocks (Tertiary	0.05–11	1 670	2	13.4; 121	1	6.7 4 6.7–6	70				1; 40; 42; 43 1; 40
	1 50				1 22 1 50		22 50; 50			1 0.8 1 1 17 1	0.8 17					67 1 67					2; 10 1; 2; 40; 46
					1 10	1	10 1	Quaternary o		deposits underlying Lava Creek T 1 Salt Lake aquifer	1	Vellowstone Group				1 32.2					10; 33
	1 2 4 7–12 (9.5)	2 4.4; 7.5 2 20; 8,000			2 255; 484 0 50–1,000	6 5-8,000 15	2–1,000 6	29; 58		2 5 0.67–170 12	29; 58 0.67–170	1 180,000 5 1,000-	4 161–25,800	2	24,100; 24,300	1 180,0 11 161–75		1 1,800 4 5.9–270	2 1.3; 110 2 1	1 1,800 100; 110 8 1.3–270	2 0.02; 0.03 1; 2; 12; 18; 19
(15)		4 1–15 (7)			(550)	(20) 4 1–15 (7) 1	(375)			Camp Davis aquifer		75,700			24,300						46; 48; 51;
					1 10	1	10			Teewinot aquifer											2
2 5; 30	1 17.4	1 144			3 10–50 (15)	3 5–144 (30) 4	10–50 (16.2)			2 1; 1.5 2 Colter Formation	1; 1.5				3	134–9,380 3 134–9,	380				1; 2; 8; 9; 10; 4
1 1	2 2; 5	2 0.4; 0.9				<u> 1 1 </u>	2; 5		Wasatch zone of the	Wasatch-Fort Union aquifer (Pa	ss Peak Formation)										1; 40; 46
1 10		1 0.9					20		Fort Union zone of t	he Wasatch-Fort Union aquifer (1 2.9 1	Hoback Formation)										1; 2; 9; 10; 11
										Mesozoic hydrogeologic units Harebell Formation											
	1 12 1 20					2	12; 20			1 2 1 Blind Bull Formation	2										1; 40; 46
1 25 1 800	1 1	1 20 1 1,120				2 20; 25 2 800; 1,120 1	1			Bacon Ridge Sandstone											1; 2; 12; 46
		2 0.9; 112				2 0.9; 112	_			Frontier aquifer											9
1 3					2 28; 100	1 3	28; 100			Aspen confining unit 2 2.1; 2.8 2	2.1; 2.8										1; 40; 46
9 2–25 (8)		2 224; 224				11 2–224 (10) 1	17			1 8.5 1 Wayan Formation	8.5				1	804 1 804					1; 2; 6; 12; 40
		1 10				1 10	-			Bear River aquifer		1 0.09				1 0.09					2
5 3-15 (5) 4 1.5-100	1 30	1 4		1	1 20	6 3-15 (5) 11 5 1.5, 100 1				7 0.2–7.8 7 annett aquifer and confining uni	0.2–7.8 t				3 4	40.2–1,270 3 40.2–1,	270				1; 2; 12; 39; 4
4 1.5-100 (30)		1 25			1 20	5 1.5–100 1 (25)	20			Stump Formation											1; 2; 12; 46
1 10		1 1.5 1 30				1 1.5 2 10; 30				Twin Creek aquifer											5 1; 2; 12; 46
1 12		1 30 9 12.9–395 (60)				1 30 10 12–395 (56)						1 0.16				1 0.16					2 1; 2; 12; 15; 1
		1 120				1 120				Gypsum Spring confining unit											48
7 8–1,400		1 45 4 70–673				1 45 11 8–1,400 1	8			Nugget aquifer											35 1; 2; 6; 12; 40
(140)		(101)			1 12	(112)	12; 20		Chu	ugwater aquifer and confining u	nit										1; 2; 10; 40; 4
1 10						1 10 2	12,20			Ankareh aquifer											1; 40
		2 10.9; 15				2 10.9; 15	-			Thaynes aquifer		1 1.11				1 1.11					15
12 22–1,800 (126)						12 22–1,800 (126)															2; 6; 48
1 38 1 3						1 38	-		Dir	nwoody aquifer and confining ur	it										1; 2; 4; 12; 40
		1 150				1 150			Palaozoi	ic and Precambrian hydrogeolog	ic unite										2
		5 45–7,630				5 45–7,630			Pho	osphoria aquifer and confining u		1 4.56				1 4.50					2; 35
3 2–20 (10)		15 22–8,080 (224)				18 2–8,080 (224)				Tensleep aquifer											1; 9; 11; 35; 4
		1 112			3 21–250 (40)	3 1 112	21–250 (40)			2 1.5–1.9 2	1.5–1.9	3 0.43–5.09			2	402-469 5 0.43-4	69				2 35
4 7–1,500 (188)					1 75	14 5–1,500 1 (112)	75				0.96										1; 2; 6; 12; 3
	1 40	1 45			1 250	1 45 2	40; 250			Amsden aquifer	1.9										35 1; 10; 40; 46
		3 45–449 (112)				3 45–449 (112)			Poloozoia lir												6
			1		1 325		325; 690 1			mestone underlying the Salt Lake 1 Madison aquifer	49	1 13,100				1 13,10					23; 48; 55
1 30 1 800		22 14–4,490	3 45–4,170 (1,390)		2 30; 60	(52) 23 14–4,490	30; 60 1	0.3		1 1.5 2	0.3; 1.5	1 80.4 1 0.25			1	268 2 80.4; 2 1 0.25					1; 2; 10; 31; 1; 2; 3; 35; 4
		(449) 8 250–7,180 (1,710)			3 6–27 (20)	(449)	6–27 (20) 1	0.2		2 5; 46 3	0.2–46				2	536; 6,700 2 536; 6,					2; 7; 8; 9; 10
2 10; 50		2 1,350; 1,800 18 22–40,000	1 350		1 100	2 1,350; 1,800	100														35
	1 14	18 22–40,000 (106)			9 3.7–550 (67.5)	(100)		3.9; 6.7	1 4.2	5 0.07–29 8	0.07–29	2 442; 4,420	1	3,480 1	1,180 1	1,180 5 442–4,	420				1; 2; 4; 6; 12 3 0.005- 0.008 1; 41; 44; 45
1 10		6 30–1,100 (235)			(07.3)	7 10–1,100	(20.0)			Darby aquifer											0.008
1 500		(235) 2 112; 224				3 112–500				Bighorn aquifer											1; 35; 40
		2 112; 224 13 1.4–9,960 (224)				3 112-500 (224) 13 1.4-9,960 (224)															6; 13; 19; 24
		(224) 7 45–3,590 (224)				(224) 7 45–3,590 (224)			G	allatin aquifer and confining uni	t 										7; 9; 35
2 200; 250		(224)			1 720		720			1 140 1	140					13,400 1 13,40	0				2; 10
1 35		8 112–1,800 (224)				9 35–1,800 (224)			Gro	os Ventre aquifer and confining u	nit										1; 9; 11; 35; 4
2 50; 75 1 15		3 150–2,310				2 50; 75 4 15–2,310															1 1; 12; 23; 46;
		(824)	4 0.0 140			5 0.9–449				Flathead aquifer											7; 9; 11; 35
			4 0.9–449 (82.5)			5 0.9-449 (45)															7, 9, 11, 33

	 U.S. Geological Survey, 2012, National Water Information System (NWISWeb): U.S. Geological Survey data- base, accessed February 28, 2012, at http://waterdata.usgs.gov/wy/nwis/. 	 Craig, G.S., Jr., Ringen, B.H., and Cox, E.R., 1981, Hydrologic data for the Cache Creek-Bear Thrust Environ- mental Impact Statement near Jackson, Wyoming: U.S. Geological Survey Open-File Report 81–410, 46 p. 	22. Forsgren Associates, 1998, Turnerville water supply system, Thayne area water supply level II study, final report: prepared for the Wyoming Water Development Commission, variously paged.	 Lowry, M.E., and Gordon, E.D., 1964, Ground-water investigations in Yellowstone National Park, October 1960 to October 1963: U.S. Geological Survey Open-File Report 64–105, 39 p. 	43. Rendezvous Engineering, PC, and Hinckley Consulting, 2007, Level II Alta groundwater supply study, final report: prepared for the Wyoming Water Development Commission, variously paged.	52. TriHydro Corporation, 1995, Level I groundwater reconnaissance investigation, Thayne, Wyoming: prepared for Forsgren Associates, variously paged.
	2. Ahern, John, Collentine, Michael, and Cooke, Steve, 1981, Occurrence and characteristics of ground water in the Green River Basin and Overthrust Belt, Wyoming: Laramie, University of Wyoming Water Resources	12. Eddy-Miller, C.A., Plafcan, Maria, and Clark, M.L., 1996, Water resources of Lincoln County, Wyoming, <i>with a section on</i> Water-right administration, by R.G. Stockdale, Wyoming State Engineer's Office: U.S. Geological	 Forsgren Associates, 2008, in association with Weston Engineering, Star Valley Ranch master plan, final report: prepared for the Wyoming Water Development Commission, variously paged. 	 McGreevy, L.J., and Gordon, E.D., 1964, Ground water east of Jackson Lake, Grand Teton National Park, Wyo- ming: U.S. Geological Survey Circular 494, 27 p., 1 pl. 	44. Rendezvous Engineering, PC, and Hinckley Consulting, 2009, Alpine master plan update level II, final report: prepared for the Wyoming Water Development Commission, variously paged.	53. TriHydro Corporation, 1997, Well construction and testing report, level II feasibility study, Thayne, Wyoming: prepared for the Wyoming Water Development Commission and Forsgren Associates, variously paged.
	 Research Institute, v. V-A and V-B (plates), 123 p., 6 pl. 3. Antweiler, J.C., Love, J.D., Prostka, H.J., Kulik, D.M., Anderson, L.A., Williams, F.E., Jinks, J.E., and Light, T.D., 1990, Minute and Minu	 Survey Water-Resources Investigations Report 96–4246, 131 p., 3 pl. Forsgren Associates, 1991a, Star Valley municipal water supply level II study, report of the Etna water supply system, final report: prepared for the Wyoming Water Development Commission, variously paged. Forsgren Associates, 1991b, Star Valley municipal water supply level II study, report of the Freedom water sup- 	 Forsgren-Perkins Engineering, PA, 1986, Bedford water supply study level I, final report: prepared for the Wyo- ming Water Development Commission, variously paged. 	 Mills, J.P., and Huntoon, P.W., 1989, Foreland structure and karstic ground water circulation in the eastern Gros Ventre Range, Wyoming: Wyoming Water Research Center, Water Resource Publication 89–02, 101 p. 	45. Sunrise Engineering, 1995, Alpine Junction water level I study: prepared for the Wyoming Water Development Commission, variously paged.	54. Walker, E.H., 1965, Ground water in the upper Star Valley, Wyoming: U.S. Geological Survey Water-Supply Paper 1809–C, 27 p., 1 pl.
Wyoming: U.S. Geological	T.D., 1989, Mineral resources of the Teton Wilderness and adjacent areas, Teton, Fremont, and Park Counties, Wyoming: U.S. Geological Survey Bulletin 1781, 105 p.		 Forsgren-Perkins Engineering, PA, 1987, Bedford water supply study level II, final report: prepared for the Wyoming Water Development Commission, variously paged. 	 Nelson Engineering, 1984, Jackson water feasibility study: prepared for the Wyoming Water Development Commission and the Town of Jackson, variously paged. 	46. Sunrise Engineering, 2003, in association with Boyle Engineering, BBC Consulting, Inc., Hinckley Consult- ing, Fassett Consulting, Rendezvous Engineering, and Nelson Engineering, Snake/Salt River Basin plan, final	55. Weston Engineering and Forsgren Associates, 2009, Star Valley Ranch groundwater level II study, final report: prepared for the Wyoming Water Development Commission and Town of Star Valley Ranch, variously paged.
	4. Avery, Charles, 1987, Chemistry of thermal water and estimated reservoir temperatures in southeastern Idaho, north-central Utah, and southwestern Wyoming, <i>in</i> Miller, W.R., The Thrust Belt revisited: Wyoming Geologi-	ply system, final report: prepared for the Wyoming Water Development Commission, variously paged.	26. Hinckley Consulting, and Jorgensen Engineering, 1997, Buffalo Valley water supply project level II Teton	37. Nelson Engineering, 1991, Teton Village water supply study level I: prepared for the Wyoming Water Develop-	report: prepared for the Wyoming Water Development Commission, variously paged.	56. Wyoming State Engineer's Office, 1995, Report on investigation of interference complaint near Auburn, Wyo-

cal Association 38th Annual Field Conference Guidebook, p. 347–353.	15. Forsgren Associates, 1991c, Star Valley municipal water supply level II study, report of the Grover water supply	County, Wyoming, final report: prepared for the Wyoming Water Development Commission, variously paged.	ment Commission and the Town of Jackson, variously paged.	47. Sunrise Engineering, 2006, Siting, construction and testing of the Town of Afton new municipal East Alley	ming: Wyoming State Engineer's Office, Cheyenne, Wyoming, variously paged.
 A.V.I. Professional Corporation, 1991, Squaw Creek water supply project level I study: prepared for the Wyo- ming Water Development Commission, variously paged. 	 system, final report: prepared for the Wyoming Water Development Commission, variously paged. 16. Forsgren Associates, 1991d, Star Valley municipal water supply level II study, report of the Osmond water sup- 	 Jorgensen Engineering, 1998, in association with Gordon Prill Drapes and Hinckley Consulting, Rafter J water supply level II study, final: prepared for the Wyoming Water Development Commission, variously paged. 	 Nelson Engineering, 1993, Jackson groundwater exploration program: prepared for the Wyoming Water Development Commission and the Town of Jackson, variously paged. Nelson Engineering, 2006, in association with Lidstone and Associates, Inc., Hoback Junction water supply study level I, final report: prepared for the Wyoming Water Development Commission, variously paged. Nolan, B.T., and Miller, K.A., 1995, Water resources of Teton County, Wyoming, exclusive of Yellowstone 	 well: prepared for the Wyoming Water Development Commission and the Town of Afton, variously paged. 48. Sunrise Engineering, 2009, in association with Boyle Engineering, Rendezvous Engineering, Harvey Econom- 	57. Wyoming State Engineer's Office, 2013, e-Permit database: Wyoming State Engineer's Office, Cheyenne, Wyoming, last accessed April 3, 2013, at <i>https://seoweb.wyo.gov/e-Permit/Common/Home.aspx</i> .
6. Blanchard, M.R., Drever, J.I., and Huntoon, P.W., 1990, Discrimination between flow-through and pulse- through components of an alpine carbonate aquifer, Salt River Range, Wyoming: Wyoming Water Research Center, Water Resource Publication 90–31, 77 p.	 ply system, final report: prepared for the Wyoming Water Development Commission, variously paged. 17. Forsgren Associates, 1991e, Star Valley municipal water supply level II study, report of the Smoot water supply system, final report: prepared for the Wyoming Water Development Commission, variously paged. 	the Wyoming Water Development Commission, variously paged		ics, and Collins Planning Associates, Star Valley regional master plan, final report: prepared for the Wyoming Water Development Commission, variously paged. [2 additional volumes: Star Valley regional master plan, water system investigation and evaluations; Afton through Leisure Valley in Book 1 and North Alpine through Westview in Book 2]	
 Breckenridge, R.M., and Hinckley, B.S., 1978, Thermal springs of Wyoming: Geological Survey of Wyoming Bulletin 60, 104 p. 	 Forsgren Associates, 1992, Star Valley level II study, Freedom Water and Sewer District water supply system, final report (revised): prepared for the Wyoming Water Development Commission, variously paged. 	29. Jorgensen Engineering, and Hinckley Consulting, 1996, Buffalo Valley level I water supply project report, Teton County, Wyoming, final report: prepared for the Wyoming Water Development Commission, variously paged.	National Park, <i>with a section on</i> Water-right administration, by R.G. Stockdale, Wyoming State Engineer's Office: U.S. Geological Survey Water-Resources Investigations Report 95–4204, 76 p.	 Thompson, J.M., and Hutchinson, R.A., 1981, Chemical analyses of waters from the Boundary Creek thermal area, Yellowstone National Park, Wyoming: U.S. Geological Survey Open-File Report 81–1310, 15 p. 	
 Cox, E.R., 1974, Water resources of Grand Teton National Park, Wyoming: U.S. Geological Survey Open-File Report 74–1019, 114 p. 	19. Forsgren Associates, 1993a, Star Valley level II study, Etna Water and Sewer District water supply system, final report (revised): prepared for the Wyoming Water Development Commission, variously paged.	 Lidstone and Anderson, Inc., 1994, in association with AVI, p.c., Final report for Squaw Creek water supply project level II: prepared for the Wyoming Water Development Commission, variously paged. 	 Rendezvous Engineering, PC, 2002, in association with Hinckley Consulting and Sunrise Engineering, Final report for level II North Alpine water supply study: prepared for the Wyoming Water Development Commis- sion, variously paged. 	50. TriHydro Corporation, 1991, Star Valley water supply project level II, phase II report, supplemental report exhibit C: prepared for the Wyoming Water Development Commission and Forsgren Associates, variously	
 Cox, E.R., 1975, Discharge measurements and chemical analyses of water in northwestern Wyoming: Wyoming State Engineer's Office, Wyoming Water Planning Program Report no. 14, 21 p. 	20. Forsgren Associates, 1995, Thayne area water supply level I study: prepared for the Wyoming Water Develop- ment Commission, variously paged.	 Love, J.D., Antweiler, J.C., and Williams, F.E., 1975, Mineral resources of the Teton corridor, Teton County, Wyoming: U.S. Geological Survey Bulletin 1397–A, 51 p. 	 42. Rendezvous Engineering, PC, and Hinckley Consulting, 2002, Final report for level I Alta master plan: prepared for the Wyoming Water Development Commission, variously paged. 	paged. 51. TriHydro Corporation, 1993a, Construction and testing report Freedom No. 2 test well, Freedom, Wyoming:	
10. Cox, E.R., 1976, Water resources of northwestern Wyoming: U.S. Geological Survey Hydrologic Investigations Atlas HA–558, 3 sheets.	21. Forsgren Associates, 1997, Thayne water supply level II study: prepared for the Wyoming Water Development Commission, variously paged.	 Love, J.D., and Keefer, W.R., 1972, Geology of sedimentary rocks in southern Yellowstone National Park, Wyo- ming: U.S. Geological Survey Professional Paper 729–D, p. D1–D60, 1 pl. 	for the wyonning water Development Commission, variously paged.	prepared for the Wyoming Water Development Commission and Forsgren Associates, variously paged.	

Atlas HA-558, 3 sheets.

Summaries of spring discharge, well yield, and hydraulic properties, Snake/Salt River Basin, Wyoming. Plate 3.