

WSGS Statewide Groundwater Recharge Study

Wyoming State Geological Survey (WSGS)

Laramie, Wyoming

Karl Taboga, PG

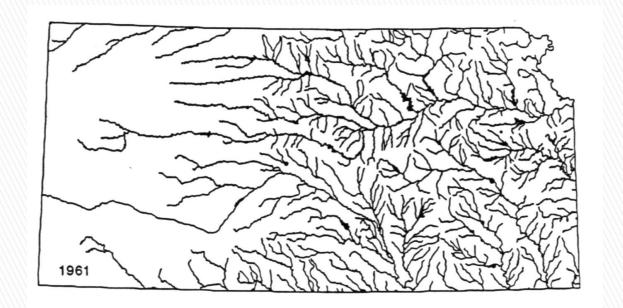
This project was funded by the Wyoming State Geological Survey consistent with it's mission to:

"Promote the beneficial and environmentally sound use of Wyoming's vast geologic, mineral, and energy resources while helping protect the public from geologic hazards."

Purpose

- Provide preliminary estimates of direct groundwater recharge from precipitation and snowmelt in Wyoming using a data driven model and geospatial analysis
- Inputs should consist of publically available environmental data
- Results were evaluated by comparing estimates from the new model to estimates obtained from other existing models in selected areas of Wyoming.

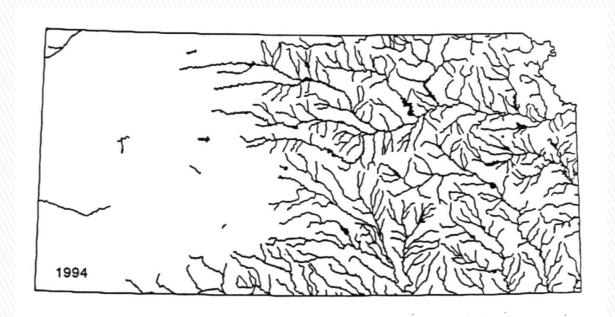
Previous Wyoming Recharge Models


▶ Statewide: Hamerlinck and Arneson (1998) – a GIS based DRASTIC model (U.S. EPA) that used average annual precipitation rates and U.S. Soil Conservation Service (SCS) soil infiltration rates

Structural basins:

- PRB Long et al, 2014 Soil Water Balance (SWB) Model
- Denver Basin Bartos et al, 2014 GW fluctuation method; Stanton et al, 2011- SWB and SOWAT models;

Recharge – Baseflow component


- ▶ Baseflow recharge that discharges to surface water bodies such as streams, springs, lakes, and wetlands.
 - Has been interpreted to equal recharge (Green et al., 2012)
 - The link between surface and groundwater, the two components of a single resource system
 - Receiving increased attention from water scientists (Barlow and Leake, 2012) and water law specialists (Platte River Basin decision)

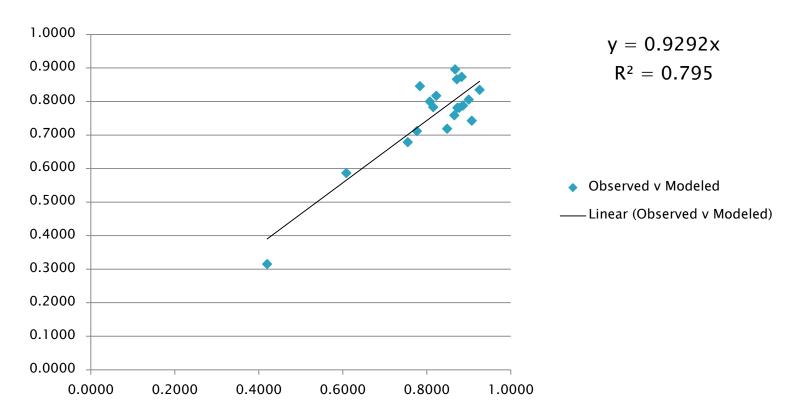
Perennial streams in Kansas

1961 and 1994

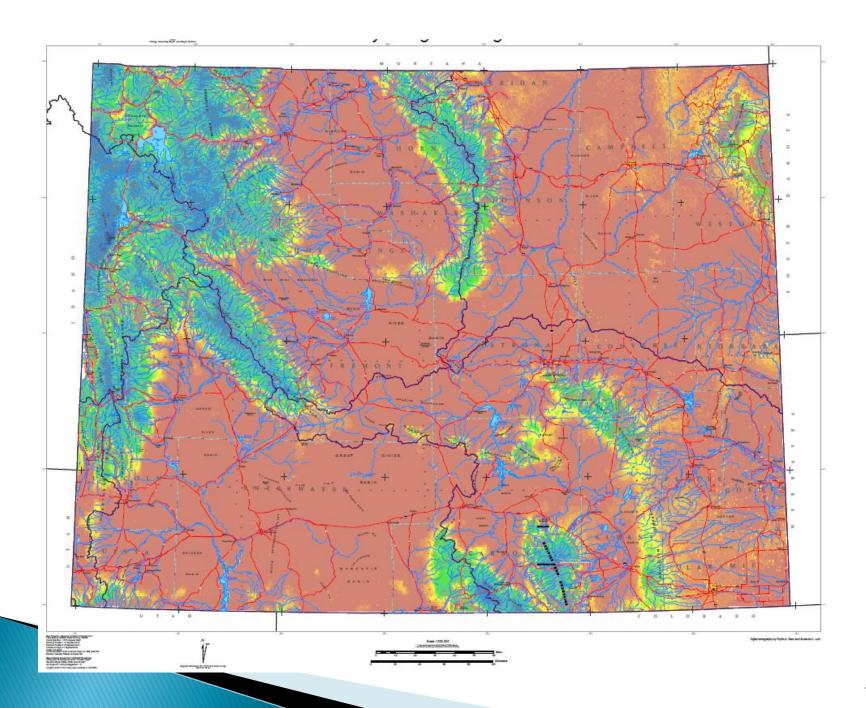
(Angelo, 1994)

Baseflow modeling

Precipitation (P) + water inflow (Q_{in}) = evapotranspiration (ET) + water outflows (Q_{out}) + changes in water storage (ΔS)


- Precipitation from the PRISM Climate Group at OSU
- Water inflows groundwater and surface water inflows
- Evapotranspiration is estimated from a WSGS ET model
- Outflows streamflows and GW outflows from the basin
 - Streamflow = baseflow + overland flows (Data from USGS stream gaging stations)
- Precipitation (P) = ET + streamflows (baseflow + overland flows)

WSGS Recharge/Baseflow Model


P = ET + runoff

- WSGS developed a formula to estimate baseflows in 19 unregulated Wyoming drainage basins using runoff, land surface slope and soil permeability data
- The coefficients in the model formula were determined with an optimization algorithm
- Results were evaluated by comparing modeled baseflows in the 19 watersheds to baseflows calculated from the USGS groundwater toolbox http://water.usgs.gov/ogw/gwtoolbox/

Observed v Modeled Baseflow

 $Baseflow/Runoff = 0.485 (RO^{4.069} (M^{2.751} + 0.013) P^{0.01})^{0.0253}$

How does the WSGS model compare?

To streamflows from Wyoming's major river basins and Hamerlinck and Arneson (1998)?

Basin Name	Outflows ¹	Inflows ¹	Streamflow Depletions ²	Net Annual Outflows ³	WSGS Recharge	H&A Recharge⁴
Bear	348,604	185,241	101,370	264,733	254,257	201,880
Green/Great Divide/Little Snake	1,841,836	442,131	636,348	2,036,054	1,907,840	2,129,986
North Platte/South Platte	1,428,394	509,649	829,564	1,748,309	1,554,486	1,735,521
Powder/Tongue/NE Basins	851,299	3,332	312,233	1,160,200	851,360	1,271,844
Snake/ Salt/ Falls Rivers/ Teton Creek	5,216,626	43,901	202,965	5,375,690	4,505,935	2,942,359
Wind/Bighorn/Yellowstone/ Missouri Headwaters	6,369,781	408,154	1,365,402	7,327,029	5,867,476	5,661,326
¹ Stafford, and others (2009)						

²WWC (2007); Meyers (1962)

³Outflows minus inflows and streamflow depletions

⁴Hamerlinck and Arneson (1998)

To USGS recharge models in Wyoming?

Powder River Structural Basin

USGS SWB model: 0.18 in/yr (Long, 2014)

WSGS model: 0.20 in/yr

High Plains Aquifer in Wyoming

USGS SWB: <u>0.53 in/yr</u> (Stanton, 2011);

SOWAT 6.5 in/yr.

WSGS model: 0.31 in/yr.

SWB / SOWAT - Soil Water Balance models

Conclusion

- The WSGS empirical recharge model appears to provide reasonable estimates of baseflow/recharge for the State of Wyoming.
- As expected recharge rates are highest in areas receiving the most precipitation.

Thank you

Other groundwater studies at:

http://www.wsgs.wyo.gov/water/groundwater

Karl Taboga (307) 766-2286 Karl.Taboga@Wyo.gov

WSGS Groundwater Atlas

Available online:

http://www.wsgs.wyo.gov/water/groundwater

- Angelo, R.T., 1994, Impacts of declining stream flow on surface water quality: Report to Office of Science and Support, Kansa Dept. of Health and Environment, 2 p.
- Arnold, J G; Allen, P M; Muttiah, R; Bernhardt, G, 1995, Automated base flow separation and recession analysis techniques: Ground Water 33, 1010–1018.
- Barlow, P.M., and Leake, S.A., 2012, Streamflow depletion by wells—Understanding and managing the effects of groundwater pumping on streamflow: U.S. Geological Survey Circular 1376, 84 p.
- Bartos, T.T., Diehl, S.F., Hallberg, L.L., and Webster, D.M., 2014, Geologic and hydrogeologic characteristics of the Ogallala Formation and White River Group, Belvoir Ranch near Cheyenne, Laramie County, Wyoming: U.S. Geological Survey Scientific Investigations Report 2013–5242, 100 p.
- Green, R., Bertetti, F. & Hernandez, M. (2012) Recharge Variability in Semi-Arid Climates. Nature Education Knowledge 3(10):34
- Hamerlinck, J.D., and Arneson, C.S., eds., 1998a, Wyoming ground-water vulnerability assessment handbook, volume 1, Background, model development, and aquifer sensitivity analysis: Laramie, University of Wyoming, Spatial Data and Visualization Center Publication SDVC 98–01–1 [variously paged].
- Long, A.J., Aurand, K.R., Bednar, J.M., Davis, K.W., Mckaskey, J.D.R.G., and Thamke, J.N., 2014, Conceptual model of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada: U.S. Geological Survey Scientific Investigations Report 2014–5055, 41 p.

- Sanford, W.E., and Selnick, D.L., 2013, Estimation of evapotranspiration across the conterminous United States using a regression with climate and land-cover data: Journal of the American Water Resources Association v. 49, n. 1, p. 217–230.
- Stanton, J.S., Qi, S.L., Ryter, D.W., Falk, S.E., Houston, N.A., Peterson, S.M., Westenbroek, S.M., and Christenson, S.C., 2011, Selected approaches to estimate water-budget components of the High Plains, 1940 through 1949 and 2000 through 2009: U.S. Geological Survey Scientific Investigations Report 2011–5183, 79 p.
- Szilagy, J. *et al.* Regional estimation of base recharge to groundwater using water balance and a base-flow index. *Ground Water.* **41**, 504–514 (2003)